
Overview of the JMS Transport Layer

<author: Dave Chappell chappell@sonicsoftware.com>

The JMS transport layer allows SOAP messages to be carried over reliable messaging
between Axis clients and Axis services. As ill ustrated in figure 1, this transport layer can
be seamlessly plugged into the Axis engine as an alternative to HTTP. This allows an
axis developer to use normal Axis API’s to perform synchronous request/reply,
document-style message-based request/response, and one-way invocations across a
reliable delivery mechanism based on JMS messaging semantics.

Client
Sender

Axis
Engine

JMS
Sender

JMS
Listener

Axis
Engine

Service
JMS

Messaging

Figure 1: SOAP over JMS as an alternate transport to HTTP.

In addition to providing the base plug-in code for the transport, the JMS transport layer
also provides a subsystem that allows many conveniences when connecting to a JMS
provider, including:

• JMS provider-independent JNDI abstraction support for JMS Administered
objects i.e. ConnectionFactories and JMS destinations.

• A mechanism of bypassing JNDI and using direct instantiation of
ConnectionFactory and Topic and Queue destinations, for those JMS providers
that support such a capabili ty.

• Generic Endpoint abstraction layer for managing Topic and Queue destinations.
• Thread pooling and Session management, providingthread-safe concurrent

sending and receiving.

• Automatic reconnect and send-retry based on configurable timeout and retry
intervals.

• Request/response management using temporary destinations, and JMSReplyTo
semantics.

• An encapsulation of JMS provider-specific information when necessary, such as
configuration information, direct instantiation of ConnectionFactories, and JMS
provider-specific exception handling details.

• A mechanism for setting JMS specific options as properties in the Call object, and
passing them through to the JMS provider during the invocation.

• Pub/Sub and point to point queueing support with durabili ty and persistent send
options

As a beginning user of this subsystem, it is not necessary to be intimately aware of the
details of all of these capabili ties. They are all hidden below the standard Axis Call and
Service interfaces, yet there when you need them. Just a few simple setup steps are all
you need to get started using the JMS transport layer. Details are provided below.

Setting up the JNDI store for JMS Administered objects

The JMS specification prescribes the use of JNDI for the discovery and instantiation of
ConnectionFactory objects, and Topic and Queue destinations. The configuration of the
JNDI access and the setup of Topic and Queue destinations is done in a JMS provider-
specific fashion. You MUST perform this step in order to proceed to running the
example.

In our example, the JNDI access makes use of the file-based FSContext version 1.2 beta
3 release, available from http://java.sun.com/products/jndi/index.html. The minimum
required objects to set up are listed in the jndi-connection-factory.properties located in
the samples/jms directory. The required fields to set up are:

java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:///c:/JNDIStore

The JNDI name used to access the ConnectionFactory is “MyCF”, and the lookup name
for the sample queue is “MyQ”.

For JMS provider-dependant instructions on how to set this up, see the “JMS Provider
Setup Instructions” section of this document.

Running the JMS sample

The JMS sample found in samples/jms, is an invocation of an external stock quote
service. For the purpose of keeping the example simple, it is a two-part invocation that
first sends the request across the JMS transport to a local JMS listener, which in turn
invokes another call to an external service across HTTP (see figure 2).

JMSTest
Client
Sender

Axis
Engine

JMS
Sender

JMS
Listener

Axis
Engine Service

JMS

Messaging

Stock
Quote
Client

Axis
Engine

HTTP
Sender

HTTP
Listener

Axis
Engine

Stock
Quote

Service

HTTP

JMSSender SimpleJMSListener

Figure 2: The JMSTest example.

Running the sample with a -? As a command line option will print a usage message
showing the different options available. To run the test with the supplied defaults:

From the samples directory, execute the following from the command line:
java samples.jms.JMSTest -c jndi-connection-factory.properties -d "MyQ" IBM PRGS

This will send the SOAP request across the JMS transport layer, to the local instance of
SimpleJMSListener. SimpleJMSListener is a JMS Listener that receives the SOAP
message, which in turn will invoke the Axis engine to call the StockQuote service. This
service will then in turn invoke samples.stock.StockQuoteService. The
StockQuoteService will make a HTTP request across the Internet to invoke a web service
that is hosted at an external web site.

If you do not have a live Internet connection, then specifying “XXX” as a ticker symbol.
This will skip the external invocation and return a hard-coded value. This is sufficient to
test the JMS transport aspect of the sample

By default, the conversation between JMSSender and SimpleJMSListener can be
executed on a local machine for testing purposes, as long as there is a JMS provider
installed somewhere that the sender and listener can connect to. However, there is
nothing to prevent them from being separated across machines or geographic locations.

Invoking the JMS Transport Across the Internet

The previous example uses JMS locally, then bridges to HTTP to access a public site
across the Internet. It is also possible for JMS to travel across the Internet in a secure
fashion (see Figure 3). For another example of how to invoke an Axis SOAP request
using JMS for the complete end-to-end round trip, using a publicly available JMS-
enabled web service, go to http://XMethods.net/AxisJMS and follow the instructions
there.

JMS
Listener

Axis
Engine

ServiceClient
Sender

Axis
Engine

JMS
Sender

Secure JMS

Internet Messaging

XMethods.net

JMS Enabled Web Services

Figure 3: Invoking a XMethods-hosted JMS-enabled Web service

JMS Provider Setup Instructions

This section is intended to include JMS provider-specific instructions for each JMS
provider that supports the Axis JMS transport layer.

SonicMQ/SonicXQ
Make sure the Sonic Explorer classpath is aware of the FSContext jar files. Before
launching the Sonic Explorer, you can modify the explorer.bat or explorer.sh and add
fscontext.jar and providerutil.jar to the SONICMQ_CLASSPATH setting.

Next launch the Sonic Explorer. On Windows it can be launched from the Start Menu-
>Programs->Sonic Software->SonicMQ->Explorer menu item. On UNIX or Linux, run
explorer.sh.

In the Sonic Explorer main window, select the “JMS Administered Object Store” node
from the tree control in the left pane of the window. Select the “JNDI Naming Service”

option in the right pane and type in the directory to store the administered objects in. For
example, if the file system directory to be used is c:\JNDIStore, type the following in the
“Properties: “ field:

java.naming.provider.url=file:///c:/JNDIStore,java.naming.factory.initial=com.sun.jndi.fs
context.RefFSContextFactory

Select the “Connect” button . The screen should look like the following (Figure 4):

Figure 4: Setting up the SonicMQ Explorer to use Sun’s file-based JNDI store.

Select the “file” node in the left pane, and select the “Destinations” tab. Enter the
following values as indicated in Figure 5:
The lookup name is “MyQ”.
The Type is “Queue”.
The Destination Name is “SampleQ1”.

Note: SampleQ1 is one of the predefined queues that comes by default in a standard
SonicMQ installation. There is no need to further define the queue. The queue name is
case sensitive.

Figure 5: Defining the JNDI lookup name for the “SampleQ1” destination used by the
examples.

Select the “Connection Factories” tab. Click on the “New” button, and enter the
following information:

Lookup name: MyCF
Factory type: QueueConnectionFactory
URL(s): localhost:2506

All the rest of the fields can be left as is (Figure 6).

Figure 6: Defining the JNDI lookup name for the ConnectionFactory using the SonicMQ
Explorer.

