
Axis C++ Windows User Guide

<!-- --> <!-- -->

1. Axis C++ Windows User Guide

1.1. Creating And Deploying your own Web Service

Creating the web service
How to use the WSDL2WS tool on the command line
Deploying your web service
Deploying your web service using AdminClient Tool
Coding the client
Running your sample
Axis Transport and Parser Library
Handlers
SSL Client
Session Headers
IPV6
Before you follow this guide, please make sure that you have followed the Windows
Installation guide

Note:The Expat XML Parser module is not currently maintained and also contains some
bugs. So it is removed from the 1.4 release. Please ignore any references to the Expat parser
in the documentation. The documentation will be updated regarding this later.

Definitions:
Axis_Extract -> The folder to which the Axis c++ binary distribution is extracted
[Axis_Folder] -> The deploy folder of the binary distribution which is copied to the apache
installation

1.2. Creating the web service

Currently axis supports two methods to create and deploy a Web Service.
Method 1) A top down approach where you start with a WSDL.
Method 2) A bottom up approach where you start with a pre-written web service.
Here we discuss the first approach since the tool to support Method 2 (i.e wcg.exe) is in a

Page 1
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

wininstall-guide.html
wininstall-guide.html

primitive and frozen state.
Here the document is written with the idea that the user uses Visual C++ (VC). But the user
could use this guide with a different IDE of his choice.
Method 1
This method assumes that the user has written the wsdl of the service which he needs to
deploy. In this method user will start with this wsdl and the tool will generate the web service
skeleton and other required files.
1) There is a folder called "simple" inside the samples/server folder in your axiscpp binary
distribution. Inside this you can find the relevant wsdl for the calculator sample. Get the wsdl
(eg:Calculator.wsdl)
2) Run the WSDL2WS tool (refer the section below 'to use the WSDL2WS tool on the
command line') and generate the server side skeletons and wrappers. These files will be in
two new folders which are generated from the tool called 'ServerOut' and 'ClientOut'.
3) Create a VC workspace.
4) Create a 'Win32 Static Library' project in this workspace.
5) From the generated 'ServerOut'folder, add the following files to this project.
Calculator.cpp Calculator.h
6) Set the include path to the include directory of the binary distribution (These include files
are in Axis_Extract/include/).
7) Fill the empty methods of the generated skeletons.
8) Generate the lib (eg: MyCalculator.lib)
9) Now create a 'Win32 Dynamic-Link Library' project.
10) From the generated 'ServerOut'folder,add the following files to this project.
CalculatorService.cpp, CalculatorWrapper.cpp and CalculatorWrapper.h
11) Set the include path to the include directory of the binary distribution.
12) Add the above created lib (Calculator.lib) as the input library of this project.
13) Build and create the DLL. (Calculator.dll)

1.3. How to use the WSDL2WS tool on the command line

To use WSDL2Ws java tool on the command line you require jdk1.4 or above.
To use WSDL2Ws java tool you have to set the CLASSPATH Environment Variable to
point to the following latest jar files.
Note: The latest jar files are in http://apache.towardex.com/ws/axis/1_2beta/
axis.jar
commons-discovery.jar
commons-logging.jar
jaxrpc.jar
saaj.jar
wsdl4j.jar

Axis C++ Windows User Guide

Page 2
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

../sample/server/simple/Calculator.wsdl
http://apache.towardex.com/ws/axis/1_2beta/

xml-apis.jar
The CLASSPATH Environment Variable should have the absolute paths of the jars
(including the jar file name) given as a semicolon separated list.
Open a command window. Change directory to Axis_Extract\lib\axis. Create a folder of your
choice and we will call this folder as [Wsdl2ws_Folder].
Now copy the wsdl file (eg.Calculator.wsdl) which you use, to the folder [Wsdl2ws_Folder].
Copy the file wsdl2ws.jar from Axis_Extract\lib\axis to [Wsdl2ws_Folder]
Then change the directory to [Wsdl2ws_Folder] and run the following command to generate
the server side skeletons and wrappers.
java -classpath .\wsdl2ws.jar;.;%CLASSPATH% org.apache.axis.wsdl.wsdl2ws.WSDL2Ws
Calculator.wsdl -o./ServerOut -lc++ -sserver
If the file generation is successful the tool will display the files that it has generated. The
skeletons and wrappers will be generated in [Wsdl2ws_Folder]\ServerOut.
Run the following command to generate the client stubs.
java -classpath .\wsdl2ws.jar;.;%CLASSPATH% org.apache.axis.wsdl.wsdl2ws.WSDL2Ws
Calculator.wsdl -o./ClientOut -lc++ -sclient
The generated client stubs will be in [Wsdl2ws_Folder]\ClientOut
Note:More details on WSDL2Ws Tool can be found by clicking on the following link
WSDL2Ws Tool

1.4. Deploying your web service

Axis cpp user can use the AdminClient tool to deploy a service or can manually deploy. The
first section shows you how to deploy your Web Service manually, without using the
AdminClient tool.
Lets say that the apache installation folder is [Apache_Folder].
(The default installation is apache 1.3.X and the path is "C:\Program Files\Apache
Group\Apache" and the path for apache 2.X is "C:\Program Files\Apache Group\Apache2")
1) Copy the above Calculator.dll to the folder [Apache_Folder]/Axis/webservices.
2) Add the following to the server.wsdd at the service level. Please make sure you add these
lines at the correct place, i.e at service level. ([Apache_Folder]/Axis/conf/server.wsdd)
<service name="Calculator" provider="CPP:RPC" description="Calculator Web Service">
<parameter name="className" value="[Apache_Folder]\Axis\webservices\Calculator.dll"/>
<parameter name="allowedMethods" value="add subtract "/>
</service>
Now you have deployed your web service

1.5. Deploying your web service Using AdminClient Tool

Axis C++ Windows User Guide

Page 3
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

arch/WSDL2Ws.html

The wsdl2ws Tool generates the deploy.wsdd and the undeploy.wsdd files which are needed
for the AdminClient. Once we have these files, we have to deploy the web service (in this
case the calculator service) with the AdminClient. We do this with the AdminClient.exe
which comes with axiscpp binary distribution. A typical invocation of the AdminClient looks
like this.

AdminClient <server> <Port> <wsddfile>

AdminClient localhost 80 deploy.wsdd

where local host would be the server where the Axis cpp server is hosted and 80 would be the
port at which it runs.

1.6. Coding the client

With the WSDL2WS tool you have almost developed your client. What you have to do next
is write a file which has a main method and create an object of the stub and invoke your
methods on that.
1) Create a vc workspace.
2) Create a 'Win32 Console Application'.
3) Add files to this project from the above generated 'ClientOut' folder.
4) Set the include path to the include directory of the binary distribution.
5) Add the following libs to the library modules path of this project.
Axis_Extract/lib/axis/
Axisclient.lib
6) Create a file with a main method which looks similar to the following and add this file to
this project.

#include "Calculator.h" int main() { Calculator c; int result = c.add(40, 20);
printf("result = %d", result); return 0; }
7) Now build and create the Client.exe

1.7. Running your sample

1) Restart Apache.
2) Run the Calculator.exe

SUCCESS ! If you get the result, you are done.

Axis C++ Windows User Guide

Page 4
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

1.8. Transport Library and Parser Library

Note:The Expat XML Parser module is not currently maintained and also contains some
bugs. For more information refer the Note at the top of the page.

AxisTransport.dll (Which can be found at Axis_Extract/bin) should be placed in the path,
and should be specified as the value to the key "Transport_http" in axiscpp.conf
[Axis_Folder]/axiscpp.conf Or in the same place as the client.exe.

Rename either AxisXMLParser_Expat.dll or AxisXMLParser_Xerces.dll to
AxisXMLParser.dll (depending on the parser you use), and give the path of the
AxisXMLParser.dll as the value of the key XMLParser in axiscpp.conf Or in the same place
as the client.exe.
If you want to use Expat parser then libexpat.dll should be given in the path.
If you want to use the Xerces parser then xerces-c_2_2_0.dll should be given in the path.

Axiscpp.conf file contains the following paths
LogPath:XXXX
WSDDFilePath:YYYY
Transport_http:ZZZZ (Not necessary)
XMLParser:WWWW
XXXX is the path to a file named AxisLog (The log file)and YYYY is the path to the
server.wsdd file.
i.e.
LogPath:[Apache_Folder]\Axis\logs\AxisLog.log
WSDDFilePath:[Apache_Folder]\Axis\conf\server.wsdd
Transport_http:[Apache_Folder]\Axis\libs\AxisTransport_D.dll
XMLParser:[Apache_Folder]\Axis\libs\AxisXMLParser_D.dll

1.9. Handlers

Handlers are pluggable components in Axis C++. We have included a set of sample handlers
for your reference. You could write your own handlers by following the instructions given
for the sample Handlers.

Note: If you are using Client side Handlers you need to enter the following entry to the
[Axis_Folder]/axiscpp.conf configuration file.

ClientWSDDFilePath:Axis\conf\client.wsdd

After entering this entry to your [Axis_Folder]/axiscpp.conf configuration file will look like:

Axis C++ Windows User Guide

Page 5
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

LogPath:Axis\logs\AxisLog.txt
WSDDFilePath:Axis\conf\server.wsdd
ClientWSDDFilePath:Axis\conf\client.wsdd

Testing the sample Handlers
We have included the following sample Handlers for your reference.

1) echoStringHeaderHandler (A server side handler sample) This sample handler will simply
echo (i.e send back) the string which you send in the SOAP request.
2)testHandler (A client side handler sample)

This sample handler will simply add a SOAP Header to the generated SOAP request.

Please note that these are very primitive sample handlers and are presented here to give you
an idea about writing your own Handlers.

echoStringHeaderHandler

Building the Sample Handlers in VC

Building echoStringHeaderHandler (A server side handler sample)
The VC dsw file (ServerHandlers.dsw) is available at Axis_Extract/vc/samples/server/
ServerHandlers.dsw. Open this file and build the project echoStringHeaderHandler. Once the
build is successful you will find the DLL (echoStringHeaderHandler.dll) at Axis_Extract/bin.
If you see this DLL at the above location you are done with the first step.

Configuring the Handler

Now edit the [Axis_Folder]/conf/server.wsdd to include the handler for a particular service.

<service name="Calculator" provider="CPP:RPC" description="Simple Calculator Axis C++
Service ">
<requestFlow name="CalculatorHandlers">
<handler name="ESHHandler" type="Axis_Extract/bin/echoStringHeaderHandler.dll">
</handler>
</requestFlow>
<responseFlow name="CalculatorHandlers">
<handler name="ESHHandler" type="Axis_Extract/bin/echoStringHeaderHandler.dll">
</handler>
</responseFlow>
<parameter name="allowedMethods" value="add sub mul div "/>
<parameter name="className" value="Axis\webservices\Calculator.dll" />
</service>

Axis C++ Windows User Guide

Page 6
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

Note: Make sure you specify the correct path of the handler dll in the server.wsdd file.

Now you are almost done to run your server side handler.
Restart the Apache server.

Running the Handler
Since this Handler is configured to the Calculator web service in the above step, this Handler
will be executed when a client send a SOAP request to the Calculator web service.

testHandler

Building the Sample Handlers in VC

Building testHandler (A client side handler sample)

The VC dsw file (ServerHandlers.dsw) is available at
Axis_Extract/vc/samples/client/ClientHandlers.dsw. Open this file and build the project
TestHandler. Once the build is successful you will find the DLL (testHandler.dll) at at
Axis_Extract/bin. If you see this DLL at the above location you are done with the first step.

Configuring the Handler

Now edit the [Axis_Folder]/conf/client.wsdd to include the handler for a particular service.

<service name="Calculator" provider="CPP:DOCUMENT" description="Calculator web
service">
<requestFlow name="CalculatorHandlers">
<handler name="TestHandler" type="Axis_Extract/bin/testHandler.dll">
</handler>
</requestFlow>
</service>

Note: Make sure you specify the correct path of the handler dll in the client.wsdd file.

Now you are almost done to run your client side handler.

Note: If you are using Client side Handlers you need to enter the ClientWSDDFilePath
entry in the [Axis_Folder]/axiscpp.conf configuration file. (See above)

Running the Handler

Since this Handler is configured to the Calculator web service in the above step, this Handler
will be executed when you run the calculator web service client. (It is at
Axis_Extract/bin/Calculator.exe)

Handler Notes:

Axis C++ Windows User Guide

Page 7
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

1) You can see the Handler behavior through the TCP Monitor. (TCP Monitor is a Axis Java
tool)
2) To get an idea of Handlers look at the Handler sample source files.
a. echoStringHeaderHandler (Axis_Extract/samples/server/echoStringHeaderHandler)
b. testHandler (Axis_Extract/samples/client/testHandler)

1.10. SSL Client

This section describes how to use an Axis C++ SSL secure client to access web services
hosted on a secure web service.
The SSL implementation for the client in Axis C++ uses the openssl opensource library.
To aid to compile the secure channel dll
1. Install the openssl 0.9.7e binary distribution.
2. Copy the include files from the openssl installation to c\include\openssl in your
distribution
3. Copy libs found in \lib\VC of the openssl installation to c\lib\openssl
Now use the vc project in c\vc\transport\Axis2\Axis2SSLChannel to compile the Secure
channel dll.
Paste this dll where the Axis C++ client can load it (i.e %PATH%) OR specify the path to it
in the axiscpp.conf under the key "Channel_ssl" (e.g Channel_ssl:c:\Axis2SSLChannel.dll)
Now when you run any client using a url of the form https://...... the client will use SSL to
connect to the relevant secure service specified by the url. The client request must be directed
at a "secure webserver" which has the relevant web service hosted.

1.11. Session Headers

The following text explains how to deploy and run the SOAP Header based sample client
with Axis Java web service
Deploying the Web Service

c\samples\server\session\headers folder contains the sources (inside the counters folder,
which is the package of these classes) needed to build the Axis java service needed to run the
soap header based session client (These server side skeletons were generated from the
Counter.wsdl)
Compile these java source files and deploy them in Axis java (visit
http://ws.apache.org/axis/java/index.html on how to achieve this)
Put the following element in the section in the server-config.wsdd to enable SOAP header
based session handling for Axis Java
<handler name="session"

Axis C++ Windows User Guide

Page 8
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

type="java:org.apache.axis.handlers.SimpleSessionHandler"/>
The following should be put in the server-config.wsdd of Axis java for this service to behave
as having session scope
<service name="CounterService" provider="java:RPC">
<parameter name="scope" value="session"/>
<requestFlow>
<handler type="session"/>
</requestFlow>
<responseFlow>
<handler type="session"/>
</responseFlow>
<parameter name="allowedMethods" value="*"/>
<parameter name="className" value="counters.CounterSoapBindingImpl"/>
<namespace>http://xml.apache.org/axis/wsdd/</namespace>
</service>

Since Axis c++ doesn't support multiref yet, Axis java multiref should be disabled by putting
the element
<parameter name="sendMultiRefs" value="false"/>
under <globalConfiguration>
Start Axis java (visit http://ws.apache.org/axis/java/index.html on how to achieve this)
Generating the client stubs and building the client and running the client.

Use the vc workspace \c\vc\samples\client\session\Headers\Headers.dsw to compile the
client side handler for this sample
Run the command java org.apache.axis.wsdl.wsdl2ws.WSDL2Ws ../Counter.wsdl
-o./gen_src -lc++ -sclient from within c\samples\client\session\headers\sessionclient to
generate the client stubs
Compile the client application using the vc workspace at
\c\vc\samples\client\session\Headers\Headers.dsw
Host the service in Axis java (Check c/samples/server/session/headers/readme.txt on how to
do this).
Configure the client to use the provided client.wsdd from axiscpp.conf (make appropriate
changes if necessary in the client.wsdd to the absolute path of the handler)
Run the tcpMonitor and configure it to check the conversation between the client and server
Run the client in the following fashion
sessionClient count 1 http://localhost:8080/axis/services/CounterService
Inspect the SOAP messages in tcpMonitor to see the values returned by the server
incremented by 1 each time (as done throught the client). Counting starts at the value 97,
which is set at the server side web service.

Axis C++ Windows User Guide

Page 9
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

1.12. IPV6

The source is in src/transport/axis2/ipv6/

We need the 2 additional headers that comes with the IPv6Kit.
Can be downloaded from http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
Extract the package and copy the tpipv6.h and wspiapi.h headers in inc folder to
$AXISCPP_HOME/include.
That would compile the axis2ipv6 VC++ project.

Axis C++ Windows User Guide

Page 10
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp

