
Axis C++ Memory Management Guide

<!-- --> <!-- -->

1. Axis C++ Memory Management Guide

1.0 Version
Feedback: axis-c-dev@ws.apache.org

1.1. Introduction

This guide records the memory management semantics and some of the rationales of the
design decisions on which memory management semantics are based on. Being a C/C++
application, it is a must that all users as well as developers have a clear understanding on how
to deal with memory allocation and deallocation.

The allocation and deallocation mechanisms are centered around the serializer and
deserializer operations in Axis C++. At the moment, because Axis C++ support both C and
C++ clients and services, the deserializer uses malloc() for memory allocation. Hence C++
users may have to live with free() (instead of delete) for deallocation. Of course one could
still use delete from C++ programs, however this may not guarantee the cleanest memory
deallocation.

1.2. Allocation/De-allocation Semantics

1.2.1. Parameters

malloc()new

1.2.2. Other Objects

1. Any outbound objects created, either by a client application or by a handler, must be
managed by the creator him(her)self. The Axis C++ engine does not delete any objects
(HeaderBlocks, Attributes, BasicNodes etc.).

2. Any inbound objects that are created by the Axis C++ Engine as a result of
deserialization should be deallocated by a target handler or the client application. Axis
C++ Engine deallocates only the headerblocks that will remain in the deserializer
(headerblocks with no target handler).

Page 1
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



1.2.3. Return Values

The values returned by the Axis C++ engine must be memory cleaned by the user written
code. The C++ code generated by the WSDL2Ws tool does contain destructors. However, at
the moment, it is not gauranteed that the destructor of a generated class would clean all the
pointer members (Some members are cleaned while others are not). Hence the users must
have a look at the generated code to understand the semantics of memory cleaning. In case of
C code, of course the user must take care of memory cleaning.

Please note that in case of arrays, both for C and C++, the Axis C++ engine returns a struct.
Hence it is a must that the memory is cleaned properly.
C++ Example:

// testing echoIntegerArray xsd__int_Array arrint; // Parameter for method call
arrint.m_Array = new int[ARRAYSIZE]; arrint.m_Size = ARRAYSIZE; for (x = 0; x <
ARRAYSIZE; x++) { arrint.m_Array[x] = x; } printf ("invoking echoIntegerArray...\n");
xsd__int_Array arrintResult = ws.echoIntegerArray (arrint); // Deal with the return
value if (arrintResult.m_Array != NULL) { printf ("successful\n"); // Clean memory of
the returned array free(arrintResult.m_Array); } else printf ("failed\n"); // Clean
memory allocated for parameter delete [] arrint.m_Array;

1.3. Dealing with SOAP Headers

1.3.1. From Stubs

IHeaderBlock is a virtual class that defines the interface to deal with SOAP headers. You can
create an IHeaderBlock at the client side using the API provided with Stub classes.

IHeaderBlock* Stub::createSOAPHeaderBlock(AxisChar * pachLocalName,
AxisChar * pachUri);
Note 1: It is advisable that if a user wants to delete a Hheader Block, (s)he uses the API
provided by the Stub class to do so.

void deleteCurrentSOAPHeaderBlock();
Note 2: IHeaderBlock destructor will take care of the Header Block member variables and
cleans them; BasicNodes (i.e its children) and the Attributes.

1.3.2. From Handlers

If the Header Blocks are created within a Handler then it is the responsibility of the Handler
writer to clean those. For that the user can write the cleanup code either in the fini() method
or in the destructor of the Handler, depending on the following situations

Axis C++ Memory Management Guide

Page 2
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



• If it is a session handler which needs to maintain its state, then the cleanup has to be done
in the destructor.

• If it is a request type handler the clean up can be done in the fini() mehtod of the Handler.
Here the writer has to explicitly write the clean up code.

If a target handler access a Header Block created by the deserializer then it is the
responsibility of the Handler to delete it.

1.4. Open Issues

As C++ is an object oriented language, one would ideally like to leverage constructors and
destructors for memory management. However, the Axis C++ engine uses structs in some
cases (e.g. Arrays) and uses malloc() to allocate memory. Hence the C++ programmer would
be forced to use free() at times. When using malloc() and free() constructors and destructors
are not called. However, as the Axis C++ engine currently supports both C and C++, it is not
simple to replace all malloc() with new or free() with delete. At the same time, there are some
places where new and delete are being used. They too cannot be replaced with malloc() and
free() overnight. This memory management complexity is the price paid for dual support of
C and C++. Efforts are under way to clean up the memory management mix-ups and still
support both C and C++. Currently the proposed solution is to make the Axis C++ engine
pure C++ and use a wrapper mechanism to support C.

When an array is de-serialized it uses C style memory re-allocation mechanism in the present
code. C++ does not support realloc() and if we use new instead we have to allocate fresh
memory blocks each time we need to increase the array size. This can be more expensive
than using realloc(). Again the price paid for efficiency is that one has to use free() and not
delete [] from C++ code.

Axis C++ Memory Management Guide

Page 3
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.


